

BCLC criteria for HCC management

(Barcelona Clinic Liver Cancer)

Liver resection in cirrhosis

Main risks of hepatectomy in cirrhosis

- Intraoperative bleeding
 - Distorted vascular anatomy
 - Portal hypertension
 - Trombocytopenia
 - Coagulopathy
- Post-hepatectomy liver failure (PHLF)
- Ascites, bacterascites
- Malnutrition

Contributing to PHLF in cirrhosis:

Patient related

- Age
- Diabetes mellitus
- Obesity (BMI)

Liver related

- Steatosis / Steatohepatitis
- Chemotherapy associated liver injury
- Cholestasis
- Fibrosis
- Cirrhosis

Surgery related

- Hypotension
- Intraoperative blood loss
- Liver ischemia
- Remnant liver volume
- Infection / sepsis
- Portal hypertension

How to diagnose / grade PHLF

- 50/50 criteria (Belghiti): PT < 50% and serum bilirubin > 50 μmol/L (= 2,9mg/dL) on POD 5 → 50% 60 day mortality
- Bilirubin > 7mg/dL any POD (Vauthey)
- ISGLS Criteria (International Study Group of Liver Surgery)

Increased INR and elevated bilirubin on or after POD5

- Grade A: no symptoms, no diagnostics, no treatment, patient on regular ward
- Grade B: symptoms, non invasive diagnostics and treatment, patient on experienced ward or intermediate care
- Grade C: critical symptoms, invasive diagnostics and treatment, patient on intensive care unit
- Mortality related ISGLS grading A: 0%, B: 12%, C: 54%

Liver dysfunction in cirrhosis

1. Reduced hepatocellular function

Synthesis: albumin, clotting factors

Detoxification: bilirubin

Methods for evaluation:

- Child-Pugh score
- MELD score
- ALBI score
- Indocyanine green test
- Hepatobiliary scintigraphy

2. Increased fibrosis

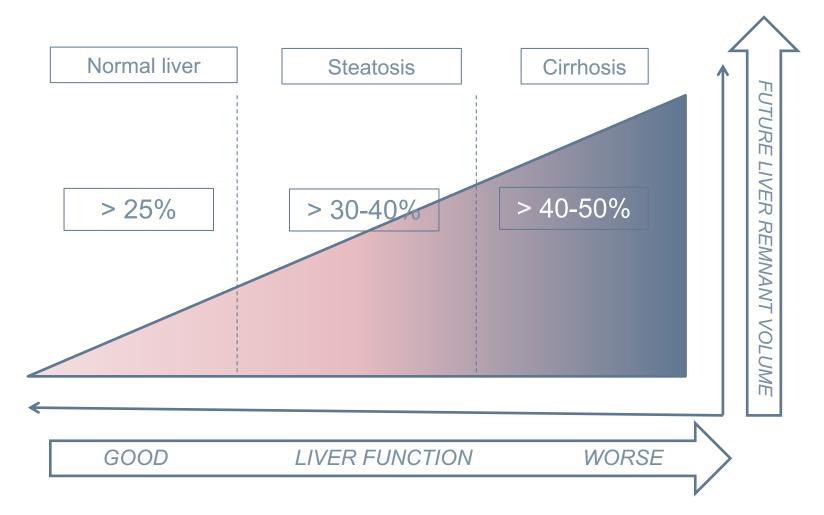
Portal hypertension, esophageal varices, ascites, splenomegaly, thrombocytopenia

Methods for evaluation:

- Thombocytosis
- APRI score
- Fibrosis-4 score
- Fibroscan
- Hepatic vein pressure gradient

Prognosis after resection in cirrhosis: impact of dysfunction: bilirubin and portal hypertension

	Number of	Actuaria	l survival
	patients	1 year	5 years
Treatment			
Surgical resection			
Takayama et al, 1998 ⁵¹			
Very early HCC	15	100%	93%
Overt HCC	52	92%	54%
Fong et al, 1999 ⁶⁷	100	83%	42%
Llovet et al. 199943	77	85%	51%
No portal hypertension, normal bilirubin	35	91%	74%
Portal hypertension, normal bilirubin	15	93%	50%
Portal hypertension, abnormal bilirubin	27	74%	25%
Takayama et al, 2000 [®]	74	100%	62%
Arii et al, 2000 ⁴⁴			
Stage I HCC <2 cm	1318	96%	72%
Stage I HCC 2–5 cm	2722	95%	58%
Stage II HCC <2 cm	502	92%	55%
Stage II HCC 2–5 cm	1548	95%	58%
Wayne et al, 2002 [®]	249	83%	41%
Liver transplantation			
lwatzuki et al, 1991 ⁷⁰	71	70%	49%
Mazzaferro et al, 199642	48	84%	74%*
Bismuth et al 1999 ⁷¹	45	82%	74%
Llovet et al, 199943	79	86%	75%
Intention-to-treat analysis	87	84%	69%
Jonas et al, 200172	120	90%	71%
Yao et al, 200173	64	87%	73%
Percutaneous ethanol injection			
Livraghi et al, 199574			
Child A, HCC <5 cm	293	98%	47%
Child B, HCC <5 cm	149	93%	29%
Lencioni et al, 199775			
Child A, 1 HCC or 3 nodules <3 cm	127	98%	53%
Child B, 1 HCC or 3 nodules <3 cm	57	88%	28%
Arii et al. 2000 ⁴⁴			
Stage I HCC <2 cm	767	96%	54%
Stage I HCC 2–5 cm	587	95%	38%
Stage II HCC <2 cm	426	92%	33%
Stage II HCC 2–5 cm	483	87%	28%
Sakamoto et al, 1998 ⁵³	88	98%	71%
Radiofreguency ablation			
Rossi et al, 1996 ⁷⁸	39	94%	40%
Buscarini et al, 2001 ⁷⁷	88	89%	33%


^{*4} year survival.

Future liver remnant = critical volume *and* critical function

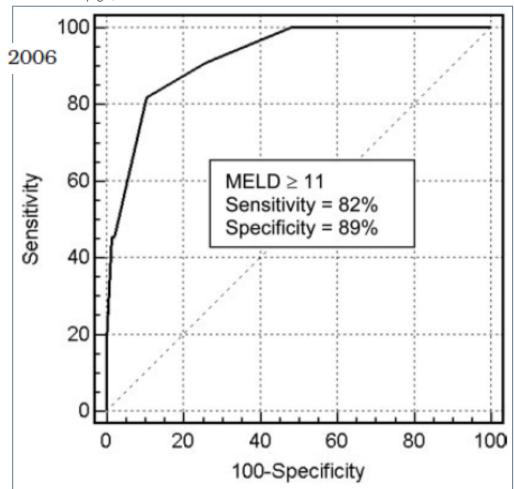
⁽²⁾ Zorzi D et al, Br J Surg. 2007;94(3):274-86)

Child Pugh score and liver resection in cirrhosis

- 216 patients with cirrhosis, hepatic resection for HCC
- In-hospital mortality Child A: 4.7% ←→ Child B-C: 21.3% (p=0.0003)
 - Capussotti et al, Eur J Surg Oncol 2005
- The CP score is the best assessment tool we can now employ
- There is uniform agreement that even segmental resections are not possible in the vast majority of Child Class B patients, CP score 7 to 9
- Discovering which patients in Child Class A are the poor risk is the desired goal
 - Schneider, Philip D Surg Clin North Am. 2004 Apr;84(2):355-73

MELD score and liver resection in cirrhosis

Impact of Model for End-Stage Liver Disease (MELD) Score on Prognosis After Hepatectomy for Hepatocellular Carcinoma on Cirrhosis


Alessandro Cucchetti, Giorgio Ercolani, Marco Vivarelli, Matteo Cescon, Matteo Ravaioli, Giuliano La Barba, Matteo Zanello, Gian Luca Grazi, and Antonio Daniele Pinna

Department of Surgery and Transplantation, University of Bologna, Policlinico Sant'Orsola-Malpighi,

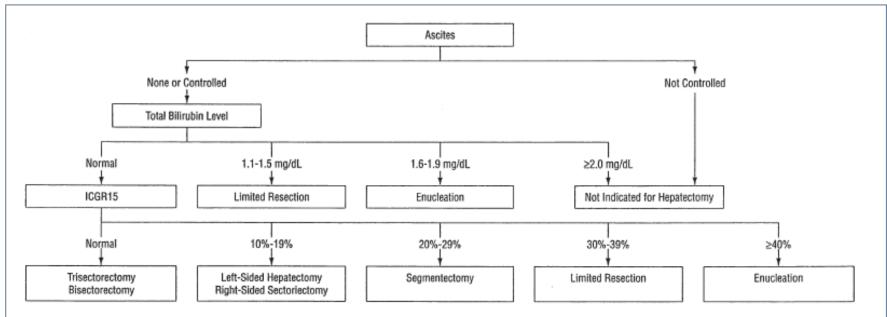
Bologna, Italy

LIVER TRANSPLANTATION 12:966-971, 2006

Receiver operating characteristic (ROC) curve of the MELD score in predicting postoperative liver failure. (AUC 0.92, 95% CI 0.87-0.96)

ALBI score and liver resection in cirrhosis

- ALBI = $[log10bilirubin(\mu mol/L)x0,66] + [albumin (g/L)x-0,085]$
- Albumin-bilirubin grade estimates grade of liver dysfunction and is predictive for PHLF
 - Johnson PJ et al, J Clin Oncol 2015 + Andreatos N et al, J Gastrointest Surg 2017
- Albumin-bilirubin score to spleen thickness ratio (ALBI/ST)
- ALBI/ST ratio was a strong risk factor of PHLF in all hepatectomy subgroups.
- In conclusion, the ALBI/ST ratio has a superior predictive ability for PHLF compared with APRI and FIB-4.
 - Zhang ZQ t al, Medecine 2019



ICG and liver resection in cirrhosis

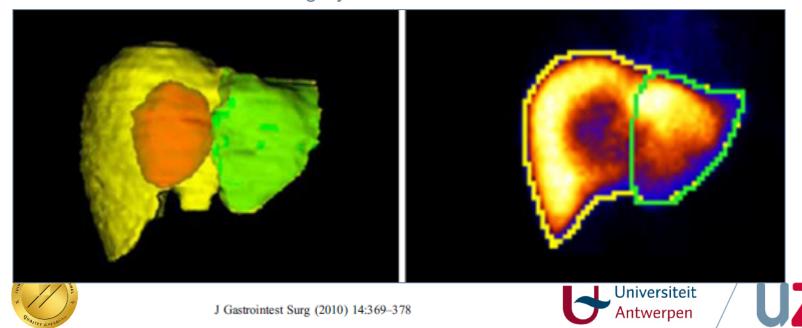
Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test

HIROSHI IMAMURA, KEIJI SANO, YASUHIKO SUGAWARA, NORIHIKO KOKUDO, and MASATOSHI MAKUUCHI

Division of Hepato-Biliary-Pancreatic Surgery and Artificial Organ and Transplantation, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

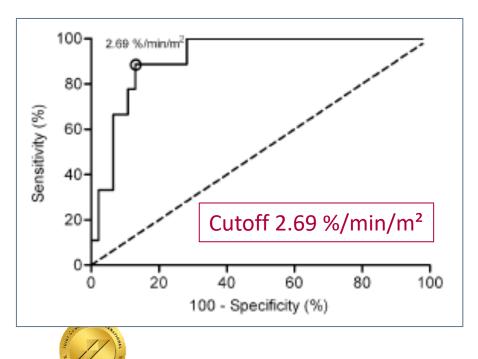
Fig. 1. Decision tree for selection of operative procedure in patients with impaired liver functional reserve. The total bilirubin values can be converted from milligrams per deciliter

to micromoles per liter by multiplying by 17.1. *ICGR15*, indocyanine green retention rate at 15 min. (Reprinted with permission)



Hepatobiliary scintigraphy with 99mTc-mebrofenin and liver resection in cirrhosis

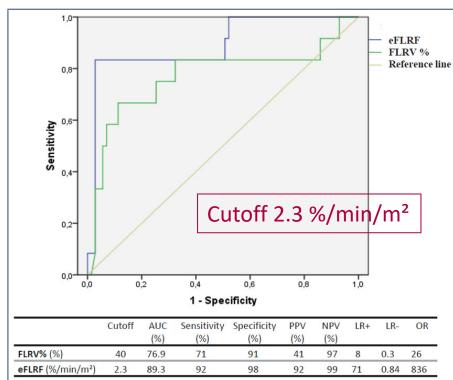
- 99mTc-mebrofenin circulates in an albumin-bound form
- dissociates from albumin after uptake into hepatocytes
- undergoes biliary excretion without undergoing biotransformation
- similar to ICG also not suitable in cholestatic livers
- has been validated as a tool for measuring the total liver function and functional remnant liver before liver surgery.



Hepatobiliary scintigraphy with 99mTc-mebrofenin: the cutoff's to prevent PHLF in all hepatectomics

Assessment of Future Remnant Liver Function Using Hepatobiliary Scintigraphy in Patients Undergoing Major Liver Resection

Wilmar de Graaf • Krijn P. van Lienden • Sander Dinant • Joris J. T. H. Roelofs • Olivier R. C. Busch • Dirk J. Gouma • Roelof J. Bennink • Thomas M. van Gulik


J Gastrointest Surg (2010) 14:369-378

Future remnant liver function estimated by combining liver volumetry on magnetic resonance imaging with total liver function on 99mTc-mebrofenin hepatobiliary scintigraphy: can this tool predict post-hepatectomy liver failure?

Thiery Chapelle1, Bart Op De Beeck2, Ivan Huyghe3, Sven Francque4, Ann Driessen5, Geert Roeyen1, Dirk Ysebaert1

HPB 2016;18(6):494-503

Hepatobiliary scintigraphy with 99mTc-mebrofenin in cirrhosis

- The assessment of hepatobiliary function by Tc-mebrofenin scintigraphy may be a good choice for assessing the severity of liver fibrosis in patients with HCV.
 - Kula M et al, Nucl Med Commun 2010

How to score increased fibrosis?

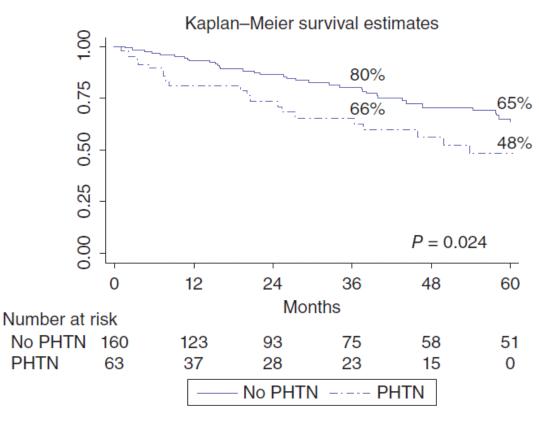
Trombocytosis & APRI score and liver resection in cirrhosis

- Preoperative and/or postoperative thrombocytopenia (platelet count below 100 or 150) constitute significant risk factors for PHLF in cirrhotic and non-cirrhotic patients.
 - Meyer, J HPB 2019

• APRI =
$$\frac{\frac{AST}{upper\ limit\ of\ normal}}{platelet\ count} \times 100$$

 Score designed for cirrhotic livers, but predicts PHLF in chemo-associated liver injury patients

Fib-4 score & Fibroscan and liver resection in cirrhosis


- FIB-4 = $\frac{age \ x \ AST}{platelet \ count \ x \ \sqrt{ALT}}$
- The FIB-4 index may be a better predictor of PHLF and overall survival in HCC patients underwent hepatectomy than CP score.
 - Zhou P et al J Gastroint Surg 2018
- Liver stiffness measurement by transient elastography has a similar performance to HVPG in predicting decompensation at 3 months after liver resection.
 - Procopet B et al , Ultrason 2018
- Liver stiffness measurement is a valid and reliable method for the prediction of PHLF grade A/B among patients with HCC
 - Han H et al , Eur J Rad 2017

Clinical estimation of portal hypertension and liver resection in cirrhosis

- Esophageal varices
- Splenomegaly
- Platelet count < 100.000
 - Santambrogio R HPB 2013

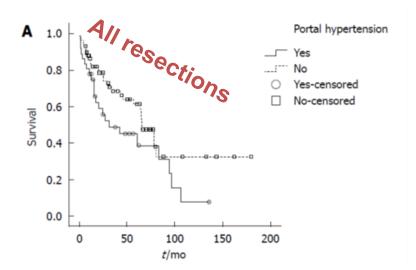
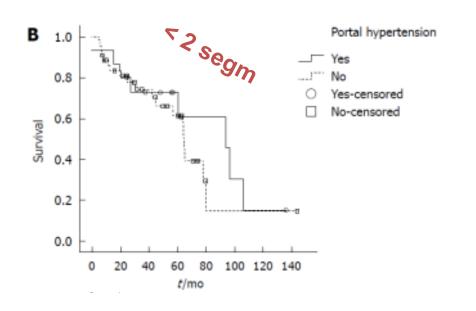
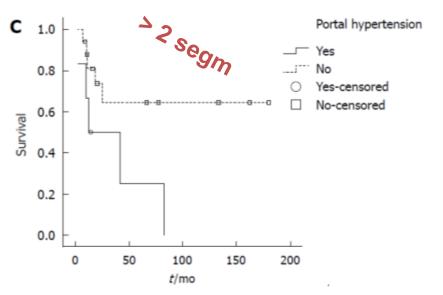


Figure 1 Overall survival curves of the whole study population of 223 cirrhotic patients undergoing a hepatic resection (HR) for hepatocellular carcinoma (HCC) with the portal hypertension (PHTN) or without PHTN (P = 0.024)





Impact of resection < 2 or > 2 segments in clinical portal hypertension

Ruzzenente A et al, WJG 2011

Estimation of hepatic venous pressure gradient better than clinical estimation of portal hypertensics

Hepatic venous pressure gradient in the assessment of portal hypertension before liver resection in patients with cirrhosis

E. Boleslawski¹, G. Petrovai¹, S. Truant¹, S. Dharancy², A. Duhamel³, J. Salleron³, P. Deltenre², G. Lebuffe⁴, P. Mathurin² and F. R. Pruvot¹

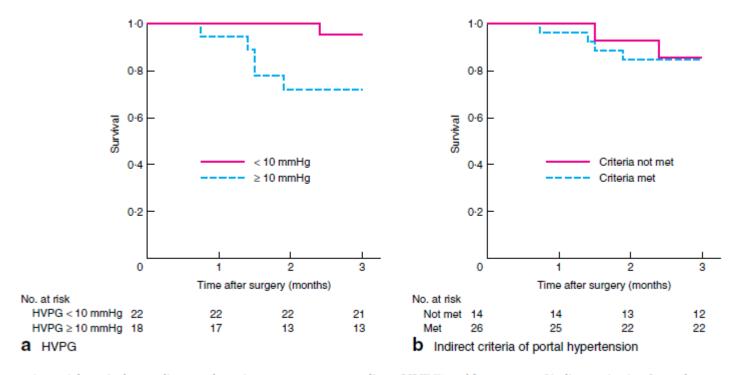


Fig. 2 Actuarial survival according to a hepatic venous pressure gradient (HVPG) and **b** presence of indirect criteria of portal hypertension. a P = 0.036, **b** P = 0.879 (log rank test)

HVPG and liver resection in cirrhosis

- HVPG ≥ 10 mmHg = contraindication for hepatic resection (EASL* and AASLD guidelines)
- HVPG < 10 mmHg: 90% will not develop decompensation of cirrhosis within 4y **
- Elevated HVPG → negative prognosis of patients with HCC and cirrhosis

- HVPG > 10 mmHg ≠ absolute contraindication for hepatic resection ***
- Excluding all HVPG > 10 mmHg from hepatic resection, will exclude 25% patients who
 would benefit of surgery without short-term postoperative complications ****

*** Xiaolong Q. et al Oncotarget. 2016

**** Cucchetti A, J of Hepatology 2016

^{*} BruixJ, Hepatology 2005

^{**} Ripoll C, Gastroenterol 2007

Portal hypertension and liver resection

Table1: Association between elevated HVPG and prognosis of HCC with cirrhosis after hepatic resection

Study	Inclusion period	Measurements of HVPG	No. of surgical cases	No. of elevated HVPG	Main Endpoints	Conclusions
Boleslawski, 2012 [10]	2007- 2009	directly	40	≥10 mmHg 18 (45.0%)	Postoperative liver dysfunction	A raised HVPG was associated with postoperative liver dysfunction and 90-day mortality.
Stremitzer, 2011 [11]	2000- 2009	directly	35	≥5mmHg 14 (40.0%)	Postoperative complications and death	HVPG exceeding 5 mmHg was associated with worse liver fibrosis, higher rates of postoperative liver dysfunction and ascites and a longer hospital stay.
Cucchetti, 2016 [12]	2009- 2014	directly	70	≥10 mmHg 34 (48.6%)	Post-hepatectomy liver failure defined by the International Study Group of Liver Surgery, 90 day mortality, Detailed clinical evaluation after 3 months	HVPG can be used to stratify the risk of post- hepatectomy liver failure. CSPH was associated with a higher risk of ascetic decompensation. But there was no difference in 1- and 3- survival rates after resection between CSPH group and non-CSPH group group.
Ripoll, 2007 [13]	1993- 1999	directly	213	≥10 mmHg 134 (62.9%)	Development of clinical decompensation	HVPG can predict clinical decompensation in patients with compensated cirrhosis. Patients without CSPH have a 90% probability of not developing clinical decompensation in a median follow-up of 4 years.
Ishizawa, 2008 [14]	1994- 2004	the presence of EV and/or PC of 100,000/L associated with splenomegaly	386	≥10 mmHg 136 (35.2%)	Recurrence, 3-year/5-year mortality	Long-term outcomes were poorer in CSPH group than in the no-CSPH group among patients with Child- Pugh class A cirrhosis but did not differ in two groups among patients with Child- Pugh class B cirrhosis
He, 2015 [17]	2003- 2008	if two or more of the criteria were met: 1) PC < 100 × 10%1 and/or white blood cell count < 4 × 10%1 three times in succession, 2) Splenomegally, 3) Portal vein width > 14 mm or spleen vein width > 10 mm via ultrasound, and 4) EV.		≥10 mmHg 102 (48.8%)	Recurrence, Liver decompensation, 5-year mortality	Before propensity score matching, CSPH patients had higher rates of postoperative complication and liver decompensation with similar rates of recurrence-free survival and overall survival. However, after propensity score matching, revealed similar rates of postoperative complication, liver decompensation, recurrence-free survival and overall survival.
Giannini, 2013 [18]	1987- 2008	the presence of either EV or gastric varices, portal hypertensive gastropathy, or PC < 100 × 10 ⁹ /I associated with splenomegaly	152	≥10 mmHg 68 (44.7%)	Death or until December 2008	Presence of CSPH has no influence on survival of HCC patients with well-compensated cirrhosis.

Portal hypertension and liver resection

Table 1 Relevant reported studies describing the impact of hepatic venous pressure gradient or portal-hypertension related variables in patients with potentially resectable or resected hepatocellular carcinoma

Ref.	Patients included (n)	Portal hypertension-related variables studied	Outcome
Llovet et al ^[3]	43	HVPG	CSPH independently associated with 5-yr post-operative mortality
Bruix et al ^[12]	29	HVPG	CSPH independently associated with PLF at 3-mo
Berzigotti <i>et al</i> ^[13]	63	Spleen size; platelet count; platelet count/	Best single predictor of CSPH: liver stiffness; combination with
		spleen diameter; liver stiffness; LSPS PH risk score	spleen size and platelet count improved the results (AUROC LSPS 0.852; PH risk score 0.884)
Boleslawski et al ^[14]	43	HVPG	CSPH independently associated with increased PLF and 90-d
		Platelet count; spleen size; esophageal varices = indirect signs of PH	mortality. Indirect signs of PH showed no discriminative ability
Capussotti et al ^[15]	217	Platelet count; spleen size; esophageal varices	PH associated with lower 3-yr and 5-yr survival
Cescon et al ^[16]	90	Liver stiffness; platelet count; spleen size; esophageal varices	LS (but not other signs) independently associated with the risk of PLF
Chen et al ^[17]	190	Intraoperative measurement of PVP	PVP independently associated with PLF on multivariate analysis
Cucchetti et al ^[18]	241	Platelet count; spleen size; esophageal varices	PH associated with lower 3-yr and 5-yr survival, but not after adjusting for MELD, albumin and extent of resection no
Figueras et al[19]	39	HVPG	CSPH associated with increased risk of morbidity
Giuliante <i>et al</i> ^[20]	588	Platelet count; spleen size; esophageal varices	PH independently associated with increased mortality
Imamura et al ^[21]	532	Varices, hypersplenism or hepatofugal portal flow	PH associated with a higher risk of post-operative ascites
Ishizawa <i>et al</i> ^[22]	203	Platelet count	Platelet count $\leq 100 \times 10^3/\text{mL}$ independently associated with PLF
Kim et al ^[23]	72	Liver stiffness	LS predicted PLF with good accuracy; LS better than ICG15
Llop et al ^[24]	79	Liver stiffness	CSPH predicted with good accuracy
Ishizawa <i>et al</i> ^[25]	434	Platelet count; spleen size; esophageal varices	PH associated with lower 3-yr and 5-yr survival

HVPG: Hepatic venous pressure gradient; PH: Portal hypertension; LS: Liver stiffness; PVP: Portal vein pressure; PLF: Post-operative liver failure; CSPH: Clinically significant PH (HVPG ≥ 10 mmHg); AUROC: Area under receiver operating characteristic curve; MELD: Model for end-stage liver disease.

Can HBS predict clinical portal hypertension in cirrhosis?

Median HBS, HBS^{BSA} and MELD score for HVPG < or \ge 10mmHg in Child-Pugh A and in Child-Pugh B/C.

		HV	р	
		< 10mmHg	≥ 10mmHg	
Child-Pugh A	(n)	31	17	
HBS	%/min	9.18 (4.61 - 13.88)	7.19 (2.43 - 10.30)	0.001
HBSBSA	%/min/m²	5.23 (2.56 - 7.95)	3.28 (1.13 - 5.20)	<0.001
MELD		8 (3 - 14)	8 (6 - 14)	0.974
Child-Pugh B/C	(n)	14	37	
HBS	%/min	3.84 (1.81 - 10.60)	2.48 (0.41 -10.00)	0.005
HBSBSA	%/min/m²	2.12 (0.97 - 6.76)	1.23 (0.17 - 5.34)	0.003
MELD		11.50 (6 - 18)	16 (2 - 28)	0.005

Recent insights

- MELD score, bilirubin, alpha-fetoprotein and platelet count showed significant predictive value for PHLF/I (all p<0.05). A composite score based on these factors serves as guideline for physicians to better select patients undergoing extensive resections to minimize PHLF.
 - Chin KM et al, Ann Hepatobiliary Pancreat Surg. 2018
- Laparoscopy reduces the risk of PHLF in cirrhotic liver
- Remnant of total liver volume, platelets and intraoperative blood loss are other predictors of PHLF
- Predictive models available at: https://prodeau.shinyapps.io/shiny/.
 - Prodeau M et al, J Hepatol 2019

Functional limits in liver resection in cirrhosis Conclusions

- PHLF after hepatectomy for HCC in cirrohotic liver is multifactorial: reduced hepatocellular function, increased fibrosis, portal hypertension, future volume/function of remnant, open vs laparoscopic resection, blood loss,...
- No good score/flow chart for cirrhotic patients

Editorial

JOURNAL OF HEPATOLOGY

Towards a personalized approach to hepatic resection in cirrhotic patients

Alessandro Vitale^{1,*}, Pietro Majno-Hurst²

¹Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; ²Department of Surgery, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, and Departments of Surgery and Transplantation, University Hospitals of Geneva, Switzerland

See Article, pages 920–929

But for now to stay on the safe side:

Resection of HCC in cirrhosis only if:

- Enough future liver remnant, evaluated by liver volumetry and liver function
- compensated cirrhosis in Child-Pugh A patient
- Hepatic Venous Pressure Gradient < 10 mmHg

